Skip to main content

Chinda Thai LLM 4B

FREE(until Dec 31, 2025)
Input: 0.00 IC / 1K tokens (~0.0 บาท/1M, ~$0.00/1M)
Output: 0.00 IC / 1K tokens (~0.0 บาท/1M, ~$0.00/1M)
v1.0 Active POST /v3/llm/chinda-thaillm-4b/chat/completions

Welcome to Chinda Thai LLM 4B API, an open-source Thai Large Language Model developed by iApp Technology in collaboration with AIEAT (AI Engineering Association of Thailand). Chinda is powered by the Qwen3 4B architecture, optimized for Thai language understanding and generation.

Try Demo

Chinda Thai LLM 4B Chat

Start a conversation with the AI assistant

Type your message below and press Enter or click Send

Overview

Chinda (จินดา) is Thailand's first community-driven open-source LLM, designed to provide powerful Thai language AI capabilities. The model supports both streaming and non-streaming inference for chat completions.

Key Features

  • Thai-Optimized: Fine-tuned specifically for Thai language understanding and generation
  • Open Source: Available for both API access and local deployment
  • OpenAI Compatible: Follows OpenAI API format for easy integration
  • Streaming Support: Real-time token streaming for responsive applications
  • 40K Context: Supports up to 40,960 tokens context length
  • Free Access: No cost until December 31, 2025

Getting Started

  1. Prerequisites

    • An API key from iApp Technology
    • Internet connection
  2. Quick Start

    • Simple REST API interface
    • OpenAI-compatible format
    • Both streaming and non-streaming support
  3. Rate Limits

    • 5 requests per second
    • 200 requests per minute
How to get API Key?

Please visit API Key Management page to view your existing API key or request a new one.

API Endpoints

EndpointMethodDescriptionCost
/v3/llm/chinda-thaillm-4b/chat/completionsPOSTChat completions (streaming & non-streaming)FREE (0 IC)
/v3/llm/chinda-thaillm-4b/completionsPOSTText completionsFREE (0 IC)
/v3/llm/chinda-thaillm-4b/modelsGETList available modelsFREE (0 IC)

Code Examples

cURL - Non-Streaming

curl -X POST 'https://api.iapp.co.th/v3/llm/chinda-thaillm-4b/chat/completions' \
-H 'apikey: YOUR_API_KEY' \
-H 'Content-Type: application/json' \
-d '{
"model": "chinda-qwen3-4b",
"messages": [
{"role": "user", "content": "สวัสดีครับ คุณช่วยอะไรได้บ้าง?"}
],
"max_tokens": 4096
}'

cURL - Streaming

curl -X POST 'https://api.iapp.co.th/v3/llm/chinda-thaillm-4b/chat/completions' \
-H 'apikey: YOUR_API_KEY' \
-H 'Content-Type: application/json' \
-d '{
"model": "chinda-qwen3-4b",
"messages": [
{"role": "user", "content": "อธิบายเกี่ยวกับ AI ให้หน่อย"}
],
"max_tokens": 4096,
"stream": true
}'

Response (Non-Streaming)

{
"id": "chatcmpl-abc123",
"object": "chat.completion",
"created": 1700000000,
"model": "chinda-qwen3-4b",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "สวัสดีครับ! ผมเป็น Chinda ผู้ช่วย AI ภาษาไทย ผมสามารถช่วยคุณได้หลายอย่าง เช่น:\n\n1. ตอบคำถามทั่วไป\n2. ช่วยเขียนข้อความ\n3. อธิบายเรื่องต่างๆ\n4. แปลภาษา\n5. ช่วยคิดไอเดีย\n\nมีอะไรให้ช่วยไหมครับ?"
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 15,
"completion_tokens": 89,
"total_tokens": 104
}
}

Python

import requests
import json

url = "https://api.iapp.co.th/v3/llm/chinda-thaillm-4b/chat/completions"

payload = {
"model": "chinda-qwen3-4b",
"messages": [
{"role": "user", "content": "สวัสดีครับ คุณช่วยอะไรได้บ้าง?"}
],
"max_tokens": 4096
}

headers = {
'apikey': 'YOUR_API_KEY',
'Content-Type': 'application/json'
}

response = requests.post(url, headers=headers, json=payload)
print(response.json())

Python - Streaming

import requests
import json

url = "https://api.iapp.co.th/v3/llm/chinda-thaillm-4b/chat/completions"

payload = {
"model": "chinda-qwen3-4b",
"messages": [
{"role": "user", "content": "อธิบายเกี่ยวกับ AI"}
],
"max_tokens": 4096,
"stream": True
}

headers = {
'apikey': 'YOUR_API_KEY',
'Content-Type': 'application/json'
}

response = requests.post(url, headers=headers, json=payload, stream=True)

for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
data = line[6:]
if data != '[DONE]':
chunk = json.loads(data)
content = chunk['choices'][0]['delta'].get('content', '')
print(content, end='', flush=True)

JavaScript / Node.js

const axios = require('axios');

const url = 'https://api.iapp.co.th/v3/llm/chinda-thaillm-4b/chat/completions';

const payload = {
model: 'chinda-qwen3-4b',
messages: [
{ role: 'user', content: 'สวัสดีครับ คุณช่วยอะไรได้บ้าง?' }
],
max_tokens: 4096
};

const config = {
headers: {
'apikey': 'YOUR_API_KEY',
'Content-Type': 'application/json'
}
};

axios.post(url, payload, config)
.then(response => {
console.log(response.data.choices[0].message.content);
})
.catch(error => {
console.error(error);
});

PHP

<?php

$curl = curl_init();

$payload = json_encode([
'model' => 'chinda-qwen3-4b',
'messages' => [
['role' => 'user', 'content' => 'สวัสดีครับ คุณช่วยอะไรได้บ้าง?']
],
'max_tokens' => 4096
]);

curl_setopt_array($curl, [
CURLOPT_URL => 'https://api.iapp.co.th/v3/llm/chinda-thaillm-4b/chat/completions',
CURLOPT_RETURNTRANSFER => true,
CURLOPT_POST => true,
CURLOPT_POSTFIELDS => $payload,
CURLOPT_HTTPHEADER => [
'apikey: YOUR_API_KEY',
'Content-Type: application/json'
],
]);

$response = curl_exec($curl);
curl_close($curl);

$result = json_decode($response, true);
echo $result['choices'][0]['message']['content'];

API Reference

Headers

ParameterTypeRequiredDescription
apikeyStringYesYour API key
Content-TypeStringYesapplication/json

Request Body Parameters

ParameterTypeRequiredDescription
modelStringYesModel name: chinda-qwen3-4b
messagesArrayYesArray of message objects with role and content
max_tokensIntegerNoMaximum tokens to generate (default: 4096, max: 40960)
streamBooleanNoEnable streaming response (default: false)
temperatureFloatNoSampling temperature 0-2 (default: 0.7)
top_pFloatNoNucleus sampling (default: 0.9)

Message Object

FieldTypeDescription
roleStringsystem, user, or assistant
contentStringThe message content

Model Information

PropertyValue
Model Namechinda-qwen3-4b
Base ModelQwen3 4B
Context Length40,960 tokens
LanguagesThai, English
LicenseOpen Source

Use Cases

  • Chatbots: Build Thai-speaking conversational AI assistants
  • Content Generation: Generate Thai content for articles, social media, and marketing
  • Translation: Translate between Thai and English
  • Q&A Systems: Answer questions in Thai
  • Code Assistance: Help with programming questions (with Thai explanations)
  • Education: Thai language tutoring and explanations

Open Source

Chinda is also available as an open-source model that you can run locally:

For tutorials on running Chinda locally, see:

Pricing

AI API Service NameEndpointIC CostOn-Premise
Chinda Thai LLM 4B [v1.0]/v3/llm/chinda-thaillm-4b/chat/completions

FREE (until Dec 31, 2025)

Input: 0.00 IC / 1K tokens
Output: 0.00 IC / 1K tokens

Contact

Support

For support and questions: